Show simple item record

dc.contributor.authorChawla, Ashima
dc.contributor.authorJacob, Paul
dc.contributor.authorLee, Brian
dc.contributor.authorFallon, Sheila
dc.date.accessioned2020-04-29T14:01:35Z
dc.date.available2020-04-29T14:01:35Z
dc.date.copyright2019
dc.date.issued2019
dc.identifier.citationChawla, A., Jacob, P., Lee, B., Fallon, S. (2019). Bidirectional LSTM autoencoder for sequence based anomaly detection in cyber security. International Journal of Simulation -- Systems, Science & Technology. 20(5): 1-6. DOI: 10.5013/IJSSST.a.20.05.07en_US
dc.identifier.issn1473-804X
dc.identifier.issn1473-8031
dc.identifier.otherArticles - Software Research Institute AITen_US
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3154
dc.description.abstractCyber-security is concerned with protecting information, a vital asset in today’s world. The volume of data that is generated can be usefully analyzed when cyber-security systems are effectively implemented with the aid of software support. Our approach is to determine normal behavior of a system based on sequences of system call traces made by the kernel processes in the system. This paper describes a robust and computationally efficient anomaly based host based intrusion detection system using an Encoder-Decoder mechanism. Using CuDNNLSTM networks, it is possible to obtain a set of comparable results with reduced training times. The Bidirectional Encoder and a unidirectional Decoder is trained on normal call sequences in the ADFA-LD dataset. Intrusion Detection is evaluated based on determining the probability of a sequence being reconstructed by the modelen_US
dc.formatPDFen_US
dc.language.isoenen_US
dc.publisherUnited Kingdom Simulation Societyen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceInternational Journal of Simulation -- Systems, Science & Technologyen_US
dc.subjectAutoencodersen_US
dc.subjectCuDNNLSTMen_US
dc.subjectEmbeddingsen_US
dc.subjectHost based intrusionen_US
dc.subjectSystem callen_US
dc.titleBidirectional LSTM autoencoder for sequence based anomaly detection in cyber security.en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.sponsorThis project reported in this paper has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No. 700071 for the PROTECTIVE project.en_US
dc.description.peerreviewyesen_US
dc.identifier.doidoi: 10.5013/IJSSST.a.20.05.07
dc.identifier.orcidhttps://orcid.org/0000-0001-5933-3107
dc.identifier.orcidhttps://orcid.org/0000-0001-5090-2756
dc.identifier.orcidhttps://0000-0002-8475-4074
dc.identifier.orcidhttps://orcid.org/0000-0001-6874-5699
dc.rights.accessOpen Accessen_US
dc.rights.accesshttp://creativecommons.org/licenses/by/4.0/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.departmentSoftware Research Institute AITen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International