Show simple item record

dc.contributor.authorDa Silva Pereira, Everton Henrique
dc.contributor.authorMojicevic, Marija
dc.contributor.authorTas, Cunety Erdinc
dc.contributor.authorLanzagorta Garcia, Eduardo
dc.contributor.authorFournet, Margaret Brennan
dc.date.accessioned2024-03-28T14:37:59Z
dc.date.available2024-03-28T14:37:59Z
dc.date.copyright2024
dc.date.issued2024-03-02
dc.identifier.citationDa Silva Pereira, E.H., Mojicevic, M., Tas, C.E., Lanzagorta Garcia, E., Brennan Fournet, M. (2024). Targeting bacterial nanocellullose properties through tailored downstream techniques. Polymers. 16, 678. https://doi.org/10.3390/polym16050678en_US
dc.identifier.issn2073-4360
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/4771
dc.description.abstractBacterial nanocellulose (BNC) is a biodegradable polysaccharide with unique properties that make it an attractive material for various industrial applications. This study focuses on the strain Komagataeibacter medellinensis ID13488, a strain with the ability to produce high yields of BNC under acidic growth conditions and a promising candidate to use for industrial production of BNC. We conducted a comprehensive investigation into the effects of downstream treatments on the structural and mechanical characteristics of BNC. When compared to alkaline-treated BNC, autoclave-treated BNC exhibited around 78% superior flexibility in average, while it displayed nearly 40% lower stiffness on average. An SEM analysis revealed distinct surface characteristics, indicating differences in cellulose chain compaction. FTIR spectra demonstrated increased hydrogen bonding with prolonged interaction time with alkaline solutions. A thermal analysis showed enhanced thermal stability in alkaline-treated BNC, withstanding temperatures of nearly 300 °C before commencing degradation, compared to autoclaved BNC which starts degradation around 200 °C. These findings provide valuable insights for tailoring BNC properties for specific applications, particularly in industries requiring high purity and specific mechanical characteristics.en_US
dc.formatPDFen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePolymers
dc.subjectBacterial nanocelluloseen_US
dc.subjectBiopolymersen_US
dc.subjectDownstreamen_US
dc.subjectMaterialsen_US
dc.subjectTreatmenten_US
dc.subjectKomagateibacteren_US
dc.subjectMembranesen_US
dc.titleTargeting bacterial nanocellullose properties through tailored downstream techniquesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationTechnological University of the Shannon: Midlands Midwesten_US
dc.contributor.sponsorTechnological University of The Shannon through the President Seed Fund, the Government of Ireland International Education Scholarship 2020/2021, the European Union’s Horizon 2020 Research and Innovation program [grant number: 870292 (BioICEP)] and European Union’s Horizon Europe EIC Pathfinder program [grant number: 101046758 (EcoPlastiC)].en_US
dc.identifier.doi10.3390/polym16050678en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7480-9564en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6094-8480en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8390-1434en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9426-9315en_US
dc.rights.accesshttp://creativecommons.org/licenses/by/4.0/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.departmentPRISM: Polymer, Recycling, Industrial, Sustainability and Manufacturing Institute: TUS Midlandsen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International