Show simple item record

dc.contributor.authorHe, Xiaonan
dc.contributor.authorYe, Yuhang
dc.contributor.authorLee, Brian
dc.contributor.authorXia, Yukun
dc.contributor.authorQiao, Yuansong
dc.date.accessioned2025-01-07T12:28:07Z
dc.date.available2025-01-07T12:28:07Z
dc.date.issued2024-07-02
dc.identifier.citationHe, X., Ye, Y., Lee, B., Xia, Y. and Qiao, Y. (2024) 'Semantic guidance incremental network for efficiency video super-resolution', Visual Computer, 40(7), pp. 4899-4911. Available at: DOI: 10.1007/s00371-024-03488-yen_US
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/4879
dc.description.abstractIn video streaming, bandwidth constraints significantly affect client-side video quality. Addressing this, deep neural networks offer a promising avenue for implementing video super-resolution (VSR) at the user end, leveraging advancements in modern hardware, including mobile devices. The principal challenge in VSR is the computational intensity involved in processing temporal/spatial video data. Conventional methods, uniformly processing entire scenes, often result in inefficient resource allocation. This is evident in the over-processing of simpler regions and insufficient attention to complex regions, leading to edge artifacts in merged regions. Our innovative approach employs semantic segmentation and spatial frequency-based categorization to divide each video frame into regions of varying complexity: simple, medium, and complex. These are then processed through an efficient incremental model, optimizing computational resources. A key innovation is the sparse temporal/spatial feature transformation layer, which mitigates edge artifacts and ensures seamless integration of regional features, enhancing the naturalness of the super-resolution outcome. Experimental results demonstrate that our method significantly boosts VSR efficiency while maintaining effectiveness. This marks a notable advancement in streaming video technology, optimizing video quality with reduced computational demands. This approach, featuring semantic segmentation, spatial frequency analysis, and an incremental network structure, represents a substantial improvement over traditional VSR methodologies, addressing the core challenges of efficiency and quality in high-resolution video streaming.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofVisual Computeren_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectConvolutional neural networken_US
dc.subjectEfficiencyen_US
dc.subjectSemantic guidanceen_US
dc.subjectVideo super-resolutionen_US
dc.titleSemantic guidance incremental network for efficiency video super-resolutionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationTechnological University of the Shannon: Midlands Midwesten_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.1007/s00371-024-03488-yen_US
dc.identifier.eissn1432-2315
dc.identifier.endpage4911en_US
dc.identifier.issue7en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8475-4074en_US
dc.identifier.startpage4899en_US
dc.identifier.volume40en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentDepartment of Computer and Software Engineeringen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International